Maternal Nutrition, Fetal Nutrition, and Disease in Later Life

DAVID J. P. BARKER, MD, PHD, FRCP

From the MRC Environmental Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK

Date accepted: 6 February 1997

ABSTRACT

Recent findings suggest that many human fetuses have to adapt to a limited supply of nutrients and in doing so they permanently change their physiology and metabolism. These "programmed" changes may be the origins of a number of diseases in later life, including coronary heart disease and the related disorders stroke, diabetes, and hypertension. Program the Fetus

In fetal life the tissues and organs of the body go through what are called "critical" periods of development. Critical periods may coincide with periods of rapid cell division. The fetus's main adaptation to lack of nutrients or oxygen is to slow its rate of cell division, especially in those tissues that are undergoing critical periods at the time. Cell division slows either as a direct effect of undernutrition on the cell or through altered concentrations of growth factors or hormones, of which insulin and growth hormone are particularly important. Even brief periods of undernutrition may permanently reduce the numbers of cells in particular organs. This is one of the mechanisms by which undernutrition may permanently change or "program" the body. Other lasting "memories" of undernutrition include change in the distribution of cell types, hormonal feedback, metabolic activity, and organ structure.

The diversity of size and form of babies born after normal pregnancies is remarkable. Studies of the birthweights of relatives, together with evidence from animal cross breeding experiments, have led to the conclusion that this diversity is essentially determined by the intrauterine environment rather than the fetal genome. For example, among half-siblings, related through only one parent, those with the same mother have similar birthweights, the correlation coefficient being 0.58. The birthweights of half-siblings with the same father are, however, dissimilar, the correlation coefficient being only 0.1.

Studies of animals show that the supply of nutrients and oxygen is the aspect of the intrauterine environment that usually limits fetal growth. In humans, low birthweight, and disproportionate head circumference, length and weight, are markers of lack of nutrients at particular stages of gestation. They reflect adaptations that the fetus made to sustain its development—adaptations that, it seems, may permanently program the body's structure and function.

It is unquestionable that the human body can be programmed by undernutrition. Rickets has demonstrated, for a long while, that undernutrition at a critical stage of early life leads to persisting changes in structure. What is new is the realization that some of the body's memories of early undernutrition become translated into pathology and thereby determine disease in later life. This is perhaps unsurprising given the numerous animal experiments showing that undernutrition in utero leads to persisting changes in blood pressure, cholesterol metabolism, insulin response to glucose, and a range of other metabolic, endocrine, and immune functions known to be important in human disease.

SIZE AT BIRTH AND CORONARY HEART DISEASE

An important clue suggesting that coronary heart disease might originate during fetal development came from studies of death rates among babies in Britain during the early 1900s. The usual certified cause of death in newborn babies at that time was low birthweight. Death rates in the newborn differed considerably between one part of the country and another, being highest in some of the northern industrial towns and the poorer rural areas in the north and west. This geographical pattern in death rates was shown to closely resemble today's large variations in death rates from coronary heart disease, variations that form one aspect of the continuing north-south divide in health in Britain. One possible...
conclusion suggested by this observation was that low rates of growth before birth are in some way linked to the development of coronary heart disease in adult life. The suggestion that events in childhood influence the pathogenesis of coronary heart disease was not new. A focus on intrauterine life, however, offered a new point of departure for research.

The early epidemiological studies that pointed to the possible importance of programming in coronary heart disease were based on the simple strategy of examining men and women in middle- and late life whose body measurements at birth were recorded. The birth records on which these studies were based came to light as a result of the Medical Research Council’s systematic search of the archives and records offices of Britain—a search that led to the discovery of three important groups of records in Hertfordshire, Preston, and Sheffield. The Hertfordshire records were maintained by health visitors and include measurements of growth in infancy as well as birthweight. In Preston and Sheffield, detailed obstetric records documented body proportions at birth.12,13

Sixteen thousand men and women born in Hertfordshire during 1911–1930 have now been traced from birth to the present. Death rates from coronary heart disease fell two-fold between those at the lower and upper ends of the birthweight distribution (Table I).14 A study in Sheffield showed that those who were small at birth because they failed to grow, rather than because they were born early, who are at increased risk of the disease.15 The association between low birthweight and coronary heart disease has now been confirmed in the USA. Among 80 000 women in the Nurses Study there was a similar two-fold fall in the relative risk of non-insulin-dependent diabetes mellitus and impaired glucose tolerance falling three-fold between men who weighed 5.5 lb at birth and those who weighed 9.5 lb.16 This association has been confirmed in men and women in three studies in the UK,17 three in the USA,18–21 and one in Sweden.22

One response to such findings is to argue that people who were exposed to an adverse environment in utero and failed to grow continue to be exposed to an adverse environment in childhood and adult life, and it is this later adverse environment that produces the effects attributed to programming in utero. This argument has been addressed in recent publications and there is little evidence to support it.9,14 Rather, associations between birthweight and later disease are found in each social group, and are independent of influences such as smoking and obesity in adult life.9 Other difficulties in interpreting associations between size at birth and disease in adult life arise from failure to trace subjects and loss to follow-up, through migration or refusal to participate. The analyses done in countries where child mortality is low, they also argue against suggestions that associations with birth size reflect bias due to differential survival or migration.20

Adult lifestyle does, however, add to intrauterine effects. The highest prevalences of non-insulin-dependent diabetes and impaired glucose tolerance, for example, are seen in people who were small at birth but obese as adults.17,22 Around the world the communities with high prevalences of diabetes generally conform to this pattern. They include Ethiopian Jews air-lifted to Israel, or Indian people who migrated to the UK, among whom fetal growth was generally poor but obesity common in adult life.23 We know something of why people who had low growth rates in utero cannot withstand the stress of becoming obese as adults. There is some evidence that their poor fetal growth resulted in a reduced number of pancreatic β cells and hence a reduced capacity to make insulin. There is stronger evidence that they became resistant to the effects of insulin.24

TABLE I.

<table>
<thead>
<tr>
<th>Birthweight (lb (kg))</th>
<th>Standardized mortality ratio</th>
<th>Number of deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤5.5 (2.50)</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>6.5 (2.95)</td>
<td>81</td>
<td>137</td>
</tr>
<tr>
<td>7.5 (3.41)</td>
<td>80</td>
<td>298</td>
</tr>
<tr>
<td>8.5 (3.86)</td>
<td>74</td>
<td>289</td>
</tr>
<tr>
<td>9.5 (4.31)</td>
<td>55</td>
<td>103</td>
</tr>
<tr>
<td>>9.5 (4.31)</td>
<td>65</td>
<td>57</td>
</tr>
<tr>
<td>All</td>
<td>74</td>
<td>941</td>
</tr>
</tbody>
</table>

TABLE II.

<table>
<thead>
<tr>
<th>Birthweight (lb (kg))</th>
<th>Number of men</th>
<th>Percent with impaired glucose tolerance or diabetes</th>
<th>Odds ratio adjusted for BMI (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤5.5 (2.50)</td>
<td>20</td>
<td>40</td>
<td>6.6 (1.5–28)</td>
</tr>
<tr>
<td>6.5 (2.95)</td>
<td>47</td>
<td>34</td>
<td>4.8 (1.3–17)</td>
</tr>
<tr>
<td>7.5 (3.41)</td>
<td>104</td>
<td>31</td>
<td>4.6 (1.4–16)</td>
</tr>
<tr>
<td>8.5 (3.86)</td>
<td>117</td>
<td>22</td>
<td>2.6 (0.8–8.9)</td>
</tr>
<tr>
<td>9.5 (4.31)</td>
<td>54</td>
<td>13</td>
<td>1.4 (0.3–5.6)</td>
</tr>
<tr>
<td>>9.5 (4.31)</td>
<td>28</td>
<td>14</td>
<td>1.0</td>
</tr>
<tr>
<td>All</td>
<td>370</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

BMI, body mass index.
coronary heart disease. Studies in Preston showed that it is specifically thinness at birth, measured by a low ponderal index (birthweight/length3), that is associated with resistance to insulin and its associated disorders in later life. This observation has recently been confirmed in Sweden.22

The thin neonate lacks skeletal muscle, as well as fat, and muscle is the main peripheral site of action of insulin, which has a key role in stimulating cell division in fetal life.26 It is thought that at some point in mid-to-late gestation the thin neonate became undernourished, and that in response its muscles became resistant to insulin. Muscle growth was, therefore, sacrificed but the brain was spared. Studies of the Preston subjects have shown that adults who were thin at birth have reduced rates of glycolysis in their muscles.27 This could indicate persistence of a fetal glucose-sparing adaptation. Whether, or how, it is linked to insulin resistance is unclear.

SERUM CHOLESTEROL AND BLOOD CLOTTING

Studies in Sheffield show that the neonate that has a short body in relation to the size of its head, although within the normal range of birthweight, has persisting disturbances of cholesterol metabolism and blood coagulation.28 Disproportion in body length relative to head size is thought to result from undernutrition in late gestation. The fetus uses an adaptive response present in mammals and diverts oxygenated blood away from the trunk to sustain the brain.29 This affects the growth of the liver, two of whose functions, regulation of cholesterol and of blood clotting, can be permanently perturbed.28,30 Disturbance of cholesterol metabolism and blood clotting are both important features of coronary heart disease.

The Sheffield records include abdominal circumference at birth, as well as length, and it was specifically noted in this birth measurement that predicted raised serum low density lipoprotein cholesterol and plasma fibrinogen concentrations in adult life. The differences in concentrations across the range of abdominal circumference (Table IV) were large, statistically equivalent to 30% differences in mortality caused by coronary heart disease. The findings for plasma fibrinogen concentrations, a measure of blood coagulability, were of similar size.30

Since both cholesterol and fibrinogen metabolism are regulated by the liver, one interpretation of these findings is that reduced abdominal circumference at birth reflects impaired liver growth and consequent reprogramming of liver metabolism. Further understanding of liver programming may come more rapidly from animal than from human studies. Experiments on rats have shown that undernutrition in utero can permanently alter the balance of two liver enzymes, phosphoenol-pyruvate carboxykinase and glucokinase, which are involved, respectively, in the synthesis and breakdown of glucose.31 A low protein diet during gestation permanently changes the balance of enzyme activity in the offspring in favor of synthesis. It is thought that this reflects enhancement of cell replication in the area around the portal vein, which carries blood from the gut to the liver, at the expense of the cells around the hepatic vein. These experiments are of particular interest because they show that undernutrition after birth has no effect, and because the two enzymes are not normally synthesized until after birth, which suggests that their production can be regulated before the genes encoding them are transcribed.31

BLOOD PRESSURE

Associations between low birthweight and raised blood pressure in childhood and adult life have been extensively demonstrated around the world (Table V).32 The relationship is less consistently found in adolescence, presumably because the tracking of blood pressure is perturbed by the adolescent growth spurt. Persistent elevation of blood pressure seems to be associated with interference with growth at any stage of gestation, since it is found in people who were thin or short babies, or proportionately small.33 Possible mechanisms linking reduced fetal growth and raised blood pressure are persisting changes in vascular struct-

TABLE III.

<table>
<thead>
<tr>
<th>Birthweight (lb (kg))</th>
<th>Number of men</th>
<th>Percent with insulin resistance syndrome</th>
<th>Odds ratio adjusted for BMI (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>30</td>
<td>18 (2.6-118)</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>19</td>
<td>8.4 (1.5-49)</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>17</td>
<td>8.5 (1.5-46)</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>12</td>
<td>4.9 (0.9-27)</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>2.2 (0.3-14)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>407</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

BMI, body mass index.

TABLE IV.

<table>
<thead>
<tr>
<th>Abdominal circumference (in cm)</th>
<th>Number of people</th>
<th>Total cholesterol (mmol/L)</th>
<th>Low density lipoprotein cholesterol (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.5 (2.50)</td>
<td>217</td>
<td>6.5</td>
<td>4.3</td>
</tr>
<tr>
<td>61.5 (3.05)</td>
<td>433</td>
<td>6.9</td>
<td>4.6</td>
</tr>
<tr>
<td>66.5 (3.05)</td>
<td>31</td>
<td>6.8</td>
<td>4.4</td>
</tr>
<tr>
<td>71.5 (3.30)</td>
<td>45</td>
<td>6.2</td>
<td>4.0</td>
</tr>
<tr>
<td>All</td>
<td>217</td>
<td>6.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>

TABLE V.

<table>
<thead>
<tr>
<th>Birthweight (lb (kg))</th>
<th>Systolic blood pressure (mmHg) (adjusted for sex)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.5 (2.50)</td>
<td>168 [54]</td>
</tr>
<tr>
<td>61.5 (3.05)</td>
<td>165 [174]</td>
</tr>
<tr>
<td>66.5 (3.30)</td>
<td>165 [403]</td>
</tr>
<tr>
<td>71.5 (3.30)</td>
<td>163 [342]</td>
</tr>
<tr>
<td>All</td>
<td>164 [1228]</td>
</tr>
</tbody>
</table>

* Figures in brackets are numbers of subjects.
Mortality from coronary heart disease in 8175 men born during 1911–1930 according to weight at 1 y of age.

GROWTH IN INFANCY

In late gestation, rates of cell division fall and growth slows. After birth, growth mainly consists of the development and enlargement of existing cells rather than addition of new ones. Babies who are short at birth, with reduced abdominal circumferences, tend to grow slowly after birth. Low rates of infant weight gain are highly predictive of coronary heart disease among men. In Hertfordshire, men who were small at 1 y of age were three times more likely to develop or die from coronary heart disease than those who were large, an association that did not depend on the way in which the infants were fed (Fig. 1).

Low weight gain during infancy is also followed by hypertrophy of the left ventricle in childhood and adult life, which predicts coronary heart disease independently of blood pressure. One possible explanation of this is that, in the short baby, the structure of the heart is permanently changed by the adaptive responses that occurred before birth. Redistribution of blood flow in favor of the brain increases left ventricular blood flow and peripheral resistance, and may, therefore, lead to muscular hypertrophy. Another possible explanation, for which there is only limited evidence, is that short babies are resistant to growth hormone, which takes over control of growth from insulin in late fetal life although its predominant effect is on postnatal growth. Resistance to growth hormone is associated with high circulating concentrations of the hormone. Observations on patients with pituitary tumors producing growth hormone have shown that high concentrations cause cardiac enlargement, atheroma in the vessels, and death from coronary heart disease. Long-term consequences of programmed patterns of hormone release, altered tissue sensitivity to hormones, or altered in utero exposure to hormones could be important.
mechanisms underlying other diseases, in particular hormonally related cancers.40-43

THE PLACENTA

At an early stage of development an embryo comprises two groups of cells, the inner and outer cell masses. The outer cell mass develops into the placenta, and the inner cell mass becomes the fetus. Experiments in animals suggest that the distribution of cells between the two masses is influenced by nutrition and hormones.44 In sheep, undernutrition in early pregnancy leads to placental enlargement, thought to be an adaptation to extract more nutrients.45 There is evidence that placental enlargement may also be an adaptive response in humans. Ultrasound studies in humans show that at around 18 wk gestation, fetuses of a given size already have a range of placental volumes.46 Recent observations suggest that expansion of the placenta is another fetal adaptation that exacts a long-term price. The blood pressures of a group of men and women in Preston were measured and are shown in Table VI according to their birthweights and placental weight.12 As expected, blood pressures fell with increasing birthweight. At any given birthweight, however, pressures rose as placental weight increased, so that the highest pressures were in people who, in fetal life, allocated a greater proportion of their resources to placental development rather than to their own growth. Other studies have shown that placental enlargement is followed in adult life not only by elevated blood pressure, but by impaired glucose tolerance, disordered blood coagulation, and death from coronary heart disease.9 Placental enlargement, therefore, seems to be a general marker of altered fetal development and its consequences, rather than a specific marker of later hypertension.

FETAL UNDERNUTRITION

As stated already, the weight of evidence from animal cross-breeding experiments and from studies of the birthweights of relatives suggests that, although the growth of a fetus is influenced by its genes, it is usually limited by the nutrient and oxygen supply it receives. In addition, active constraint of fetal growth by the mother has been shown in embryo transfer and cross-breeding experiments; a fetus transferred to a larger uterus will achieve a larger birth size.47 The normal maternal constraint of fetal growth is reflected in the strong association between birthweight and the mother’s height and pelvic dimensions. A baby’s birth measurements, however, predict adult disease independently of the mother’s pelvic size. Our studies have, therefore, focused on the influences that determine fetal nutrition rather than on the physiological constraint of fetal growth by the mother.49

This focus on the nutrient and oxygen supply to the fetus is supported by numerous animal experiments showing that poor nutrition may both impair growth during critical periods of fetal life and permanently affect the structure and physiology of a range of organs and tissues, including the endocrine pancreas, liver, and blood vessels. A low-protein diet before and during pregnancy in rats has been shown to cause life-long elevation of blood pressure and altered glucose-insulin metabolism in the offspring.

Fetal nutrition is determined by the combination of the mother’s dietary intake and nutrient stores, together with nutrient delivery to the placenta and the placenta’s transfer capabilities.50 Metabolic adaptations to undernutrition are linked to changes in the concentrations of fetal and placental hormones that influence fetal growth. Insulin and the insulin-like growth factors (IGFs), hormones thought to have a central role in the regulation of fetal growth, rapidly respond to changes in fetal nutrition. For example, maternal starvation lowers both fetal nutrient and IGF-1 concentrations; infusion of glucose, but not amino acids, restores the IGF-1 concentration.31 Human studies of maternal nutrition in relation to fetal growth have dominantly focused on either maternal dietary intake or nutrient stores in isolation.52 However, experimental studies in sheep in Adelaide, Australia have shown that a period of maternal undernutrition in mid-pregnancy has profoundly different effects on fetal and placental growth, according to whether the ewe entered pregnancy with high or low nutritional stores.44 In these studies, the offspring of ewes entering pregnancy with low stores suffered marked impairment of fetal and placental growth if exposed to a further period of undernutrition. In contrast, those whose mothers were well nourished around conception and then had a period of dietary restriction experienced placental hypertrophy. This may be a sensitive early adaptation to sustain nutrient supply from the mother.

Undernutrition in ewes in the last trimester of pregnancy has a greater adverse effect on the development of fetuses that are growing more rapidly.53 In such fetuses, maternal undernutrition may result in fetal wasting and consumption of fetal amino acids by the placenta for it to maintain lactate output to the fetus.50 The fetus’ growth trajectory is established in early stages of gestation and in animals is readily influenced by nutrients and hormones.44 A low growth trajectory may be an important fetal adaptation in early gestation because it reduces the demand for nutrients in late gestation. We know little about influences that determine the growth trajectory in humans.

Animal experiments suggest that undernutrition in early gestation produces small but normally proportioned babies, whereas undernutrition in late gestation may have profound effects on body proportions but little effect on birthweight.1 In humans, variations in body proportions at a given birthweight are largely unexplained.55,56 However, a number of specific lines of evidence in addition to general considerations on the control of fetal growth, now support the thesis that in humans the association between small size or altered body proportions at birth and later cardiovascular disease is a consequence of fetal undernutrition. Maternal age and cigarette smoking, which influence fetal growth, have not been found to be related to cardiovascular disease in the offspring.56,57 A study in Aberdeen, however, has shown that the blood pressures of middle-aged men and women are related to their mothers’ intakes of carbohydrate and protein, which were recorded during the pregnancy.58 At either extreme of the balance of animal protein/carbohydrate intakes the offspring had raised blood pressure; they also had reduced placental weight at birth—an observation recently replicated in a study of 538 term deliveries in Southampton, England.59 Further evidence for the

<table>
<thead>
<tr>
<th>Table VI.</th>
<th>Placental Weight lb (kg)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birthweight lb (kg)</td>
<td>≤1.0</td>
</tr>
<tr>
<td>(0.45)</td>
<td>(0.57)</td>
</tr>
<tr>
<td>0.5 (2.95)</td>
<td>149 (24)</td>
</tr>
<tr>
<td>1.5 (3.41)</td>
<td>139 (16)</td>
</tr>
<tr>
<td>2.5 (5.41)</td>
<td>131 (31)</td>
</tr>
<tr>
<td>All</td>
<td>144 (43)</td>
</tr>
</tbody>
</table>

* Numbers of subjects are shown in parentheses.
Role of nutrition in programming is that alterations in the ratio of placental weight to birthweight, which are known to be associated with maternal anaemia during pregnancy, are also associated with the development of coronary heart disease and hypertension in later life. In addition, a study in Jamaica found that children of mothers who were thin in early pregnancy, having low skinfold thicknesses, had raised blood pressure at age 10 years. In South India the prevalence of coronary heart disease was highest in men and women whose mothers had low weight in pregnancy. Finally, the occurrence of stroke is associated with a pattern of retarded fetal growth that is found in mothers with a "flat" bony pelvis—a deformity caused by poor nutrition in childhood.

CHALLENGES TO THE FETAL ORIGINS HYPOTHESIS

Fetal undernutrition and coronary heart disease do not have the same distribution across the world. In China and Japan, for example, babies are small at birth compared with European babies, but coronary heart disease is rare. We know, however, that in Third World countries babies tend to be proportionately smaller in head size, length and weight rather than disproportionate as in Western countries. Present evidence suggests that this pattern of fetal growth in humans is not associated with coronary heart disease or any of its risk factors other than raised blood pressure.

Because twins are growth retarded compared to singletons, it has been suggested that they should have an increased risk of coronary heart disease. Twins are, however, heterogeneous—a mixture of proportionately and disproportionately small babies. A group of twins might have low or high rates of coronary heart disease depending on whether proportionately or disproportionately small babies predominate.

A number of studies have found U-shaped associations between birth measurements and coronary risk factors. Pregnancies in which the mother develops diabetes lead to babies that grow rapidly in late gestation and are macroscopic at birth. Among the Pima Indians there is a similar U-shaped relationship between birthweight and diabetes, large babies being born to mothers with gestational diabetes, which is unusually common among these people. As yet we know little about the long-term consequences of macrosomia.

THE FUTURE

If we are to be able to use the information outlined here to prevent disease we need to progress beyond epidemiological associations to greater understanding of the cellular and molecular processes that underlie them. We need to know what factors limit the delivery of nutrients and oxygen to the human fetus; how the fetus adapts to a limited supply; how these adaptations program the structure and physiology of the body; and by what molecular mechanisms nutrients and hormones alter gene expression. Further research requires a strategy of interdependent clinical, animal, and epidemiological studies.

As yet, we do not know the true impact of maternal nutrition on fetal development. The relatively disappointing effects of human interventional studies of maternal nutrition during pregnancy have led to the view that fetal development is little affected by changes in maternal nutrition, except in circumstances of famine. It is, however, clear that birthweight alone is an inadequate summary measure of fetal growth, and that a more sophisticated view of optimal fetal development is necessary, which takes account of the long-term sequelae of fetal adaptations to undernutrition. Experimental studies in sheep indicate the importance of the mother’s nutritional state around the time of conception and of the fetal growth trajectory in crucially determining the effects of maternal undernutrition during pregnancy. These further indicate the dangers of an overly simplistic view of maternal nutrition in relation to fetal and placental growth.

REFERENCES

54. Leese HJ. The energy metabolism of the preimplantation embryo. In: Early embryo development and paracrine relationships. Alan R. Liss, 1990:67